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Abstract—Software-defined networks are useful for multiple
tasks, including firewalling, telemetry, and flow analysis. In
particular, the P4 language makes it possible to carry out some
simple packet processing tasks in the data plane, i.e., on the
switch itself (without real-time support from the SDN controller
or a server). However, owing to the limitations of packet parsing
in P4, these tasks involve only the packet headers. In this paper,
we present a novel approach that allows Deep Packet Inspection
(DPI) – i.e., inspection of the packet payload – in the data
plane, using P4 alone. We make use of the fact that in P4, a
switch can clone and recirculate packets. One copy (clone) can
be recirculated, slicing off a byte in each round, and using a
finite-state machine to check if a target string has yet been seen.
If the target string is found, the other copy (original packet)
is discarded; if not, it is passed through. Our approach allows
us to build the first application-layer firewall (URL filter) in the
data plane, and to achieve essentially line-rate performance while
filtering thousands of URLs, on a commodity programmable
switch. It may in future also be used for other DPI tasks.

Index Terms—Software-Defined Networks (SDN),
Programmable Dataplane, Application-Layer Firewall

I. INTRODUCTION

Switches and routers – particularly Software-Defined Net-
work (SDN) switches – have been successfully used to imple-
ment network-layer firewalls [1], flow analysis [2], and a wide
range of other functions. Part of the reason for this remarkable
versatility is that a small number of packet headers (source
IP, source port, destination IP, destination port, protocol, etc.)
are key for a variety of networking tasks. However, more
advanced techniques, such as the detection of malicious traffic
or malware signatures, require Deep Packet Inspection (DPI),
i.e., the inspection of packet payloads and not just packet
headers. For example, a Network Intrusion Detection System
(NIDS) needs DPI to identify if a packet carries the signature
of an attack such as Heartbleed [3].

The current state-of-the-art in DPI is still provided by old-
school dedicated middleboxes, such as Cisco Firepower Threat
Defense [4], SonicWALL TZ/NSA/SuperMassive Series [5],
Fortinet FortiGate [6] etc. These solutions treat the network
administrator as a consumer – the admin has no option other

than to trust the manufacturer for strong security guarantees
(i.e., that the firewall is not itself malicious [7], does not violate
user privacy, etc.). Further, such middleboxes are usually on-
path rather than in-path [8], and may only inspect a sample of
traffic so as not to become a bottleneck. A comprehensive line-
rate filtering solution is very expensive, and even modest fire-
walls may be out of the reach of small businesses. Such lack
of access was one of the original motivations for developing
Software-Defined Networks [9]. It is, therefore, natural to ask
why DPI tasks, such as URL filtering, are not performed using
programmable switches, which are friendly to the network
administrators and usually provide high performance for data-
plane tasks.

We find that DPI-in-SDN is challenging because, in general,
the payload is large and unpredictable in structure compared
to packet headers. For example, one payload item – the HTTP
application-layer header – has 47 possible fields, and these
fields can occur out-of-order, have variable lengths, or can be
entirely missing. Switches are designed for high-performance
packet forwarding [10] and not for general computation, so
even in the case of P4 – a language that allows users to freely
define headers for their own protocols (which the switch then
parses as easily as TCP or IP headers) – the authors of the
P416 standard explicitly say that P4 is not intended for DPI
[11].

However, these challenges are not impossible to overcome.
Early attempts such as Sekar et al’s CoMb consolidated
middlebox [12] built on the Click modular router [13], show
that DPI is indeed possible if we are willing to invest in a
specialized switch. Indeed, specific cases of limited DPI have
been built using P4-programmable platforms [14], [15]. Such
solutions are a step in the right direction but are partial i.e., the
switch leaves a portion of the work to an external server [16],
works only for special cases where the traffic satisfies strong
conditions [17], or requires specialized hardware, and are thus
implemented in NetFPGA (not on a standard switch). We
conclude that while it is possible to build a proof-of-concept
DPI system in a software-defined network, there is still a need

IE
EE

 IN
FO

C
O

M
 2

02
3 

- I
EE

E 
C

on
fe

re
nc

e 
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 | 
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0 
©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

28
99

6

Authorized licensed use limited to: Birla Institute of Technology and Science. Downloaded on September 28,2023 at 10:05:54 UTC from IEEE Xplore.  Restrictions apply. 



for a practical DPI-capable firewall that uses only standard
functionality (runs on unmodified commodity SDN switches).

In this paper, we present such a system – Deep Packet
Inspection in P4 using packet recirculation (DeeP4R) – that
performs Deep Packet Inspection using only standard SDN
switches and the P4 dataplane programming language. Our
contributions are as follows.
- DeeP4R is the first firewall to achieve “true Deep Packet

Inspection in P4” (which we define as, DPI without real-
time help from a controller or external firewall), using only
standard P4-compatible switches. When a packet arrives,
we use P4 functions to clone it, then apply the recirculate-
and-truncate method of pattern matching [18] on the cloned
packet. (We loop the packet through the switch, consuming
one byte from it with each pass. A Deterministic Finite
Automaton keeps track if we have seen the target string.)
If the clone is consumed without us seeing the target string
(URL), we let the original packet (which has not been
altered) pass through; otherwise, we drop it. Our novel
method of combining packet cloning with recirculate-and-
truncate allows us to perform flexible parsing in P4 and
allow non-target traffic to pass through transparently.
We do not claim that DeeP4R can handle all Deep Packet
Inspection tasks, but it is perfectly capable of application-
layer firewall tasks such as URL filtering. To our knowledge,
DeeP4R is the first filter able to block URLs directly in the
data plane (not taking real-time help from SDN controller,
firewall, or special hardware). In future we will extend our
approach to match other strings such as keywords, and to
other protocols such as DNS.

• We implement, demonstrate, and benchmark the scalability
and performance of DeeP4R, which as a dataplane program
can process traffic very efficiently on a real switch. For
instance, with 5000 domain names to filter and 10000
parallel flows, the latency on DeeP4R on a commodity SDN
switch is under 1 ms while our firewall server (running
standard Linux netfilter firewall) takes over 5 sec.
Our implementation is developed and run on the Netberg
710 switch [19], built around the Intel P4-based Tofino
ASIC [20]. This is a commodity switch with a standard
architecture (market cost roughly $5000); further, our code
can be ported very simply to another platform such as
the Broadcom NPL ASIC [21], as we only use standard
P4 functionality to parse packets, extract fields, and match
values to actions. Our P4 code (for the Tofino switch) and
all related scripts etc. are all available for future study or
extension, at our repository [22].
We now present some background in Section II and our

design in Section III, before going on to our evaluation results
in Section IV. We then discuss limitations and future work in
Section V, mention more related work in Section VI, and end
with some concluding remarks.

II. BACKGROUND

SDN switches like our Netberg Aurora 710 allow the user
(network admin) to specify how the switch should process

network packets, using a standard language (P4). In brief, a P4
program specifies the schema of packet headers for any desired
protocols (the headers can be whatever the user chooses, so
long as it is a consistent chunk of bytes at a consistent position
in the packet). Once the switch has this schema, it is able to
extract these header fields from packets, and use them for
routing, load balancing etc. Thus it becomes simple for the
user to adapt the switch for new protocols, such as MPLS or
QUIC [23]. Such a switch is said to have a programmable
dataplane. We explain the necessary components below.

Fig. 1: Pipeline for a switch supporting P4 language, from
P4-MACSec [24].

• Parser. This is the programmable block where the user can
specify a schema for packet parsing. The parser treats the
packet as a string and extracts header fields as sub-strings (of
a given length and starting at a given offset). There may be
packets of various protocols in the same traffic; as the parser
passes down the packet extracting headers, the information
seen so far determines what headers it expects next.
While the parser allows the user to define a protocol
header schema as they choose (hence the full form of
P4: programming protocol-independent packet processors),
such a schema does not allow for optional, variable-length,
or variable-position fields. This constraint makes it very
difficult to parse application layer protocols, in which the
header fields are indeed of variable length and position.

• Control block (Match-action tables). The control block
implements user-defined policies for packet classification.
As seen in the figure, the control block mainly consists of
match-action tables, where keys – fields extracted by the
parser, as well as metadata1 – are used to look up the
appropriate action for the packet. The action can be to drop
a packet, to set a target egress port for output, etc. These
tables are set by the control plane.

1Metadata, in a programmable switch, refers to special data structures
where a user program can store information generated during packet process-
ing. Metadata can be intrinsic to the switch or specified by the dataplane
program. Some fields such as timestamp, are read-only, others such as
egress port can be modified (e.g., to control where packet should be output).
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The control block also provides some facilities for storage
and computation, namely registers, counters, and meters.
Registers are essentially variables, storing key data elements
derived from the packet; counters maintain packets and byte
counts; and meters are used to shape traffic flow.

• Deparser. The deparser re-combines all the bytes of the
(possibly modified) packet headers back into a packet. The
user can choose to leave a particular header out of the
reconstituted packet (by setting its validity bit to zero).
Packets can also be targeted to multiple destinations here,
i.e., mirrored.

Actual programmable switches may provide more facilities.
- Traffic Manager. In between ingress and egress blocks of

a switch, there may be a traffic manager – which is not
programmable using the P4 language, and also helps decide
which egress port to forward the packet to.

- Multiple parser-deparser. In many architectures such as PSA
[25] each pipeline (ingress or egress) has its own parser,
control block, and deparser. This allows for a second pass
over the packet, without needing to loop the packet itself
through the entire switch.

- User defined control blocks. It is possible to add modular
functionality to the data plane, through user defined control
blocks, which may be incorporated into either the ingress
or the egress control block.
Such a block has the same ingress and egress-stage resources
and data available to them, but the logic is relatively free-
form, so they are able to perform more complex packet
processing tasks. They are generally implemented using
reprogrammable hardware (NetFPGA). High-performance
switches use dedicated ASIC implementations of architec-
tures such as Tofino Native Architecture (TNA) [26], and
so typically will not have such custom logic.

We note that DeeP4R performs deep packet inspection using
only standard P4. In other words, we do not use any of
these advanced features (second parser/deparser, traffic control
block, custom logic e.g., user-defined control blocks), or exter-
nal help from servers and firewalls. Once the switch is set up
(i.e., it has received its P4 protocol definitions and the match-
action tables from the controller), it operates independently to
perform traffic filtering, using only its parser and the match-
action tables of the input control block.

III. SYSTEM DESIGN

The DeeP4R system implements a Deterministic Finite-
State Automaton (DFA) in the switch, to match target strings
(keywords, URLs) in the packet.2 For example, Figure 2 shows
a DFA to match the target URLs evil.com and bad.com.

The DFA makes transitions on characters as we traverse the
packet extracting them one by one (the method of recirculate-
and-truncate [18]). The state of the DFA allows us to determine
whether the target string has been seen, so we can match

2Note that our DFA state is separate from the parser state or the flow
state (OpenState [27], for example, uses a DFA that makes one transition per
packet to track flow state) – our state machine attempts to match a string in
the packet, by making one transition per byte.
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Fig. 2: DFA to match evil.com and bad.com.

URLs (and potentially other strings or keywords) found at
any position in the packet. But the method is destructive, as it
consumes the packet being matched.3 To use recirculate-and-
truncate in a firewall, we clone the packet. One copy can be
used up for matching, and the other is accepted or discarded
depending on whether the keyword (URL) was found. We now
present the details of this system design.

A. Architecture of DeeP4R.

DeeP4R includes two main methods.
1) Recirculation-and-truncation [18] involves looping the

packet from egress to ingress (or, in case of a real switch,
from the ingress-section deparser back to the ingress-
section parser), so it passes through the pipeline again –
effectively forming a loop. With every pass-through, the
packet is edited, removing the first byte and checking its
value to make transitions according to the DFA.

2) Duplication is our method to keep the original packet intact
through the matching process. The packet is cloned, and
the clone is consumed byte-by-byte in the DFA matching
process, while the original remains intact until it is either
dropped or allowed to pass.

For these functions, we both need to implement a DFA, and to
keep track of the correspondence between original and cloned
packets. (We also need to clean up the state after the packet
processing is over.) Accordingly, we build the DeeP4R system
with the following components.
• label header. This is a small custom header which we

insert into both original and clone packets just after the TCP
header. It is for use as a scratch pad, and if the packet is
forwarded by the switch, this header is deleted.
The DeeP4R Finite State machine tracks state using a field
of the “label” header in the clone packet. We also keep track
of which clone packet (and which decision) corresponds
to which original packet, by sharing the same unique_ID
in the “label” header.

• decision register. The other component of state tracked
in DeeP4R is the decision for a packet. This is held

3The method was originally meant for applications where the programmable
switch is the final handler of the packet – for example, in a data center fabric
that directly processes a query carried in the packet.
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Fig. 3: Life cycle of a packet processed in DeeP4R. The supervisor table actions correspond to the decision blocks, and the
DFA table corresponds to the bolded block “update status”.

in a “register” (which in P4 language, simply means an
associative array i.e., a hash table in the switch SRAM
memory), named decision.
decision stores the decisions for packets currently
being processed in the switch. If a packet with
unique_identifier = X is to be discarded, then
decision[X] is 1. If it is to be accepted, then
decision[X] is -1. And if no decision is available, then
decision[X] is 0.

• DFA transition table. DFA State is updated using a standard
match-action table in the ingress block. The current DFA
state is stored in the label header of the clone packet; we use
this state, and the first byte of the packet payload (slice),
as the lookup key for the match-action table. The action
looked up in the table, sets the new DFA state, and can also
write to decision when a string is successfully matched.
Table I is an example of a simple DFA transition table.

• Supervisor table. The supervisor match-action table is re-
sponsible for packet classification – i.e., treating packets
differently based on whether they are new or recirculated,
original or cloned packets, and whether the decision is
set or not. It is very small compared to the DFA table, but
it may be considered the “main() function” of the system.
Its actions form the high-level processing flow of Figure 3.

state slice action

1 b update state(2)
2 a update state(4)
4 d update state(6)
1 e update state(3)
3 v update state(5)
5 i update state(7)
7 l update state(6)
6 . update state(8)
8 c update state(9)
9 o update state(10)

10 m update state(11, 1)

TABLE I: Our example DFA, expressed in match-action table
rules. 1 is the start state. 11 is the only accept state i.e., it
indicates that the URL was seen. Note that the last transition
from 10 to 11 not only updates the state in the label header,
it also writes to decision – hence the 1 in bold.

B. Processing of a Packet.

1) When a new packet enters the ingress block the first time,
a new header (label) is inserted between the TCP and
application-layer header; next, the whole packet is cloned.
The label header contains the following information: (a)
whether the packet is original or cloned; (b) the current
DFA state information (only present in cloned packet, ab-
sent in original); (c) a unique_id that uniquely identifies
a packet pair (an original packet and its clone).
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After the packet is cloned, both original and cloned packets
are forwarded to the recirculation port at egress. From this
point, the packets are treated differently,

2) The clone packet, when it arrives at ingress, is sent to the
DFA match-action table. The combination of the current
state and slice (first byte of payload) – say, (4, d) –
is used as a key to look up the appropriate action in the
match-action table. (slice will later be dropped by the
deparser, just before the packet is recirculated.)
The transition table either calls the action update_state
(if the table has an action matching the lookup key) or
reset_state (if it does not).w
• update_state updates the state variable to the new

state, and if it reaches an accept state, sets the flag
decision[unique_id] to 1 (indicating the original
packet should be dropped) e.g., in Table I, this happens
when the state reaches 11.
On the next recirculation, if the supervisor table sees
that the flag decision[unique_id] is set, it simply
drops the clone packet (its job is over).

• reset_state is the default action, and restarts the
evaluation after a false start, i.e., if an unexpected char-
acter appears. e.g., if ‘e’ appears after state 4 in Table I,
DeeP4R starts again with the next byte, from state 1.)

3) What if the packet terminates, and no blocked URL has
been matched in the entire TCP payload? P4 catches
this case (we fail when trying to extract a slice, and the
inbuilt construct validity bit returns 0). Instead of going
to the DFA match-action table, we fall through to the
supervisor table, which carries out the actions (a) set
decision[unique_id] to -1 (indicating the original
packet should be passed), and (b) drop the current (clone)
packet, its job is over.
Otherwise, the supervisor table recirculates the packet, so
the cycle continues with the next byte.

4) When an “original” flagged packet appears at ingress, the
supervisor table simply checks the flag corresponding to
its id, decision[unique_id]. If it is still 0, it is
recirculated to wait until a decision becomes available.
When the decision is made (packet dropped or forwarded),
the supervisor carries it out on the packet and clears
the decision[unique_id] to 0 to avoid possible
unique id collision with future packets.

IV. EVALUATION

Our DeeP4R system design, from the previous section,
raises some important questions which need to be answered
by experimental evaluation.
- Does the finite-state machine required to filter a substantial

number of URLs (say 1000 - 2000 URLs for a real fire-
wall [28]), fit in the memory available for flow tables in a
commodity switch? Is there enough room for other match-
action tables (e.g., for routing functions)?

- DeeP4R matches patterns by recirculating packets. This
inevitably introduces some delay in packet processing, even
for packets that are finally accepted. How large is this delay,

and does it cause an unacceptable penalty in performance?
For instance, do TCP packets time out because of the latency
introduced by DeeP4R?

- Besides latency, network performance also depends on
throughput. How does DeeP4R compare to the baseline
performance of the switch, and to a traditional firewall? How
well can it handle multiple flows and network congestion?

We now present the experimental setup for our evaluation,
followed by our tests and observed results.

A. Experimental Setup.

Firewall Server
(Netfilter) 

ServerClient

Tofino based switch 
(DeeP4R)

10 Gbps  
Connection

Fig. 4: Experimental setup: Client machine fetches HTTP or
HTTPS traffic (web pages, including large files) from Server.
In separate runs, we pass identical traffic through our Tofino-
based switch (running DeeP4R), and through a server running
Netfilter firewall, for a fair comparison.

Our test setup includes the following components.
• Client host : An Ubuntu Linux (20.04 LTS) system, that

generates requests for traffic. This can include high or low
volume traffic from wget or iperf as well as tailored TCP
packets (to control the packet length).

• Server host : An Ubuntu Linux (20.04 LTS) system set up
to respond to requests from client. The server runs nginx
and iperf in server mode.
Both client and server have 10 Gbps Ethernet connections
(limited by NIC capacity).

• Management host : The management host converts high-
level filtering policies (i.e., the list of URLs to block) into a
DFA, which it outputs in intermediate (barefoot runtime)
Python API commands. The SDN controller runs these
commands to set up the switch match-action tables (DFA
and supervisor).
This host is not shown in Figure 4, as it is not an operational
part of DeeP4R. It is only used for a one-time setup of the
switch. In theory the management functions could be run
in the linux computer embedded in the switch, but we used
a separate desktop machine for better performance and to
ensure we have enough memory for DFA construction.

• P4-compatible SDN switch : We use a commodity smart
switch, the Netberg Aurora 710, built around a Tofino ASIC.
Our switch runs the Open Network Linux (ONL) Operating
System. The ASIC’s ethernet ports (dev ports) are directly
connected to the physical switch QSFP connectors.
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P4 studio is used to develop both the data plane P4 program
(i.e., the match-action rules to implement a DFA on the
switch), as well as the control-plane barefoot runtime python
scripts (used to install the DFA, and also for other tasks like
checking the dataplane traffic statistics, as reported below).

• Controller : In our experiments, the SDN controller is
physically located on the Netberg switch itself.
We note that our build process (with P4 studio) outputs
the connectors to allow for the interaction of control plane
with the daemons running on the switch. We can at any
time move to a physically separate controller, or have one
controller in charge of multiple switches, as is common in
SDN. In our case, we find a local setup is adequate for
our experiments, so the controller is logically separate but
physically run on the same box i.e., the Linux computer
embedded in the switch.

• netfilter firewall server : An Ubuntu 20.04 LTS server,
set up to forward packets, using separate NIC and separate
physical ports for ingress and egress. We use the standard
Linux netfilter firewall (kernel process, configured
using iptables – our filtering rules are installed in the
filter table and FORWARD chain).
In our experiments, while the switch has QSFP ports (100

GBPS capacity), our client and server NICs are only 10 Gbps,
so this is the limiting factor w.r.t. throughput. To make sure
the physical connections are not a bottleneck, we used QSFP+
breakout cables for all connections.

B. Experimental Results.

Our first observation is that even the largest DFA we test
(5000 URLs), uses a very small fraction of the available
switch memory (of the order of 0.02%). Our experiments
are limited by the time and memory required for the offline
pre-computation of the DFA; once computed, it took little
space. A natural follow-up question is, what is the maximum
size of policy that the system can support? – this depends
on the switch used (and its memory capacity), and also on
the specific URLs used (hence the size of the DFA). While
exact details of the memory layout in Tofino or Tofino 2 are
confidential, our current best estimate is that even in the worst
case (combinatorial explosion), assuming URLs of length 10,
we can support a policy of approximately 70 000 URLs. Our
focus in these experiments is to check performance with a
policy of reasonable size, but we intend to stress-test the
system with maximum-size policies in future work.

We now discuss the performance of DeeP4R, as measured
in terms of latency for single and multiple flows (experiment 1
and 2), as well as throughput and packets dropped (experiment
3).
Experiment 1. Latency for a Single Flow.

Our first experiment was to measure the average end-to-end
latency experienced by network applications, with a single
flow passing through DeeP4R, and to compare it with the
latency of our firewall server (running netfilter).

We define end-to-end application-layer latency as the
time difference between sending the request packet, and

receiving the corresponding response packet. It is mea-
sured from the timestamps seen in packet captures at the
client. We measure how this latency varies as we increase
the number of domains filtered by DeeP4R as well as
netfilter. (The domain names used for our test are the
top URLs from Alexa. e.g., when testing for 5 URLs we
filter for google.com, youtube.com, facebook.com,
baidu.com and wikipedia.org.)

Fig. 5: E2E Delay vs Filtered Domains.

Fig. 6: Device Delay vs Number of Filtered Domains.

As seen in Figure 5, we find that the performance of
DeeP4R was consistent for all our tested policies (varying the
number of filtered URL’s from 1 to 5000). The delay was
roughly 8.5 ms, which is the same as the delay seen with our
firewall server for very small policies; for larger policies the
server performance degrades steadily (67.3 ms for 5000 rules).
We note that the baseline delay of 8.5 ms includes client,
server etc. delays, so rather than the absolute values we focus
on the fact that even with thousands of rules, DeeP4R adds
no more latency than a single-rule server firewall.

We now have the question of how much of the end-to-end
delay was directly caused by DeeP4R, or by the netfilter
firewall. Accordingly, we measured the average device delay –
the time taken by a packet of interest (i.e.,, a packet carrying
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TLS ClientHello or HTTP GET request) to pass from ingress
port to egress port in the switch or the firewall.

Figure 6 shows our results. DeeP4R consistently introduces
a delay of 0.2 ms, while we vary the number of domains from
1 to 5000. The server firewall starts with almost the same delay
(0.1 ms for 1 or 10 rules), but increases to 2.5 ms at 1000 and
10.2 ms at 5000 rules. This is consistent with our position that,
within the limits of noise in measurement, DeeP4R with up to
thousands of rules adds no more delay than a server firewall
with 1–10 rules.
Experiment 2. Latency with Parallel Flows.

Fig. 7: E2E Delay vs Parallel Flows.

Fig. 8: Device Delay vs Parallel Flows.

In our second experiment, we essentially repeat the mea-
surement of end-to-end application-layer delay and device
delay, but at the same time introduce parallel connections to
evaluate the impact of cross traffic. The number of parallel
connections was varied as 1, 10, 100, 1000 and 10000.

As seen in Figure 7 and 8, end-to-end delay and device
delay are both consistently lower for DeeP4R.

• With 1000 domain names in the filter, DeeP4R end-to-end
delay starts at 8.5 ms for one flow (as seen in Experiment
1) and gradually increases to 257 ms for 10k flows. The
firewall server starts at 28.9 ms for one flow – already

worse than in Experiment 1 – and increases to 6893 ms
for 10k flows.
Of this, in DeeP4R the device delay is only 0.2 ms for
one flow and rises to 0.8 ms for 10k flows. The firewall
server starts at 2.5 ms device delay for one flow and rises
to 1329 ms for 10k flows.

• With 5000 domain names in filter, DeeP4R shows almost
the same performance: 8.8 ms end-to-end delay for one
flow, rising to 220 ms for 10k flows. The netfilter
server degrades sharply, from 74.7 ms for a single flow
rising to 37795 ms for 10k flows (almost 40 seconds).
Of this, in DeeP4R the device delay is still 0.2 ms for one
flow rising to 0.86 ms for 10k flows. The netfilter
server starts at 10.8 ms for one flow and rises to 5139
ms for 10k flows – 6000 X slower than DeeP4R.

Fig. 9: Dropped Packets vs Parallel Flows.

As an additional experiment, we also observed how many
packets were dropped owing to congestion as we increased the
load (number of parallel flows). Figure 9 shows that DeeP4R,
running on a switch which is not worked at full capacity, drops
no packets at all until 100 flows and only 114 packets for 10k
parallel flows. The firewall server started out with 3 dropped
packets for a single flow, and at 10k parallel flows dropped
117733 packets over the duration of the test (38 sec).
Experiment 3. Throughput

For our final experiment, we consider that network perfor-
mance depends not only on packet latency but also on through-
put. Accordingly, we measured the connection’s throughput
using the standard tool iperf, setting it to send traffic on the
ports of interest (80, 443).

As Figure 10 shows, DeeP4R achieves excellent throughput
(about 9.3 Gbps, close to the theoretical value of 10 Gbps) and
this does not degrade for our tests with up to 5000 URLs. The
netfilter server performance degrades much more rapidly.

V. DISCUSSION

In this section, we discuss a few points regarding limitations,
further work, and general comments about DeeP4R.
Can DeeP4R be used with other protocols such as DNS?
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Fig. 10: Impact of increasing firewall rules on Throughput.

There is no reason the same approach would not work
with DNS traffic, but one complication is that URL’s in DNS
are expressed differently – the dot separator between labels
is replaced with the length of the label (“www.google.com”
becomes “3www6google3com”). We will therefore need mul-
tiple DFA’s to handle packets of different protocols. We intend
to compare this approach to existing DNS-in-P4 solutions such
as P4DNS [14], in future work.

We note in passing that while domain names are usually
made of ASCII-coded characters, which neatly map into one
character per byte, IDN registrations can have non-ASCII
characters. This is not a problem for DeeP4R: it simply
handles such cases as requiring two transitions instead of one
to match a single character. But this does leave the possibility
of collateral damage, where (say) a character that is encoded
as θ uses two bytes with the exact same bits as the ASCII
representation of “ab” – so blocking θ.com ends up blocking
ab.com as well. This is also an issue we are currently studying.
DeeP4R scales well with increasing number of flows and
number of filtered domains. What about other factors?

While it does not commonly vary much, payload size in
the packet can also affect performance, as a larger number of
recirculations will cause the delay to increase.

In practice, for normal sized packets, this effect is small.
Studying packets of size varying from 250 to 1250 bytes, we
note the DeeP4R performance was the exact same for 1000 or
for 5000 domains filtered (device delay slowly rising from 0.2
ms to 0.85 ms as packet size increases). Interestingly, netfilter
also slowed down – from 1.5 ms to 5.7 ms for 1000 rules, and
from 6.8 ms to 27.2 ms for 5000 rules. (The slowdown was
slightly less than linear with packet length, for both DeeP4R
and for netfilter.)

A comprehensive study of the effect of packet size, DFA
size, etc. involves deep knowledge of the architecture of our
switch – its memory capacity, a method to count the number
of recirculations, and so on. We also intend to check if it
is possible to further improve performance by taking “larger
steps” – taking slices of multiple bytes in length, rather than
a single byte, every time a packet passes through the switch.

Fig. 11: Device Delay vs Packet Size.

These tasks are the direction of our immediate future work.
Deep Packet Inspection is not limited to URL matching.
Can DeeP4R be used to match other patterns, such as
Snort signatures?

The mechanism used in DeeP4R can match any string,
or indeed any regular expression; it is not limited to URLs.
DeeP4R can therefore be used to match known keywords and
other patterns (so long as they are contained in a single packet).
However, there are two constraints we must mention.

The first constraint is that the target string must be available
in plaintext in a single traffic packet. Owing to the popularity
of HTTPS, most Web traffic is now encrypted. We note that
over the past decade, firewalls and Network Intrusion Detec-
tion Systems (Snort, Zeek) have become more constrained
in their DPI capabilities because of the lack of plaintext
traffic; this issue affects DeeP4R as well. As a partial solution,
some firewalls man-in-the-middle TLS connections to be able
to inspect their traffic. At present, this “bump-in-the-wire”
approach is not a design goal of DeeP4R, so we suggest it
is best used for DPI with unencrypted traffic (HTTP) or for
strings that are available in plain text even in HTTPS (server
name indication in the ClientHello, etc.).

The second constraint is more subtle. Snort – and UNIX
tools in general – offer a syntax called “Perl compatible regular
expressions” (PCRE), rather than true regular expressions that
correspond to DFA. PCRE extend regular expressions with
features such as backlinks, that make them strictly more
powerful; as a result they cannot always be matched by DFA
and require a top-down parser [29]. As Snort allows PCRE
expressions, we cannot state that DeeP4R can be extended to
match all patterns matched by Snort, but only those that are
(formally) regular expressions.

VI. RELATED WORK

SDN switches with a programmable data plane have been
used in a wide range of network functions such as load
balancing [30]–[32], telemetry [33], and offloading tasks from
servers [34]. Recently, they have also made a substantial
impact in network security [35]–[43], in particular, in detecting
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and protecting against attacks such as port scans and dis-
tributed denial-of-service attacks. However, these contributions
are focused on clever manipulation of flow-level information
from packet headers – for instance, a scan would be indicated
by many flows in quick succession with the same source IP but
different destination, while for a DDoS attack it is the opposite.
These contributions show the importance of programmable
data plane, but do not use Deep Packet Inspection. In this
section, we explain how our work with DeeP4R fits into the
overall research area of programmable data planes, and es-
pecially network security using such programmable switches,
with special attention to the systems that inspired DeeP4R and
systems offering a complementary approach.

A. Network Security with Programmable Data Plane

In the most general case, data plane programming is not
limited to P4, and includes other approaches such as the
Click modular router [44], and Vector Packet Processors [45].
These approaches apply a directed-graph of transformations,
such as header rewrites. P4 however, has become a standard
platform supported by various manufacturers as well as the re-
search community, so we use its standard PISA programming
model [46] as the platform for our work.

P4 was originally standardized as the P414 language, but the
more current version is P416 [11], [47]. (We note that Budiu et
al [11] is the source of our assertion that the community does
not consider P4 to be capable of DPI.) P4 is highly versatile
and can run on various target architectures, such as the basic
v1model, PSA and its simplified version SimpleSume [48],
and the Tofino Native Architecture (TNA). We note that while
our implementation is on a Tofino-based switch, we avoid
architecture-specific features, so our code should work with
other switches also.

As mentioned above, P4-compatible switches have previ-
ously been used to build stateful or stateless firewalls in
the data plane [49]–[51]; in particular, we make note of
P4Guard [52], and Gallium [53]. These works build on the
traditional approach, using SDN switches [54] and even plain
switches/routers as network-layer firewalls [55], through the
examination of link-layer, network layer and transport layer
headers. As they do not touch the TCP or UDP payload, they
cannot perform application-layer firewalling or Deep Packet
Inspection, and are therefore complementary to our work.

B. Deep Packet Inspection attempts with P4

One early example of DPI in the programmable data plane,
Meta4 [15], captures packets stats per domain name. It has
a very limited domain-parsing ability (four domain name
labels), works only for DNS packets, and makes use of packet
re-cirulation to update statistics in registers. Even so, this
approach may be useful for specific use cases such as IoT
device fingerprinting, DNS tunnel detection, and DNS based
denial-of-service attacks.

The other closely-related work we are aware of, P4DNS
[14], extracts the domain name from a DNS query packet, and
builds a DNS response packet using the match-action table as

a lookup table. Their solution only parses domain names of
limited length, but is a potential complementary approach to
DeeP4R, which works with HTTP(S) traffic.

DeepMatch [16] is perhaps the closest match to our own
work: it successfully performs Deep Packet Inspection (DPI)
on packet payloads. The main difference with our work is
that DeepMatch is developed using Micro-C, and targets the
Netronome NFP-6000 SmartNIC; in other words, it requires
custom logic to be integrated in the switch and will not run
on a standard P4-compatible platform.

Finally, we come to the direct ancestor of DeeP4R: Jepsen et
al’s “Fast String Matching in PISA” [18], that first introduced
the recirculation approach to find keywords in the payload.
Their system is suitable for a “smart fabric” that consumes
a packet (carrying a query) and returns the response directly,
but not for a network switch or middlebox. We overcome this
limitation in our work as explained in Section III, to build the
first application-layer firewall in the data plane.

VII. CONCLUSION

In this paper, we design and demonstrate a new system,
DeeP4R, that shows how DPI can be performed in the
programmable data plane – thus making it possible to build
an application-layer firewall on SDN switches. As expected
for a data plane program, it shows excellent performance
for its target DPI task (filtering of blocklisted URL), and is
able to filter thousands of URLs at line rate, without loss of
performance for non-blocked traffic.

We trust our implementation, which we make publicly
available at [22], will draw attention to the fact that P4 can
provide security more sophisticated than the traditional header
field filtering. It also raises several new open problems, which
we intend to explore in future work. In future, such a data-
plane solution may become a very useful option for data center
or enterprise network security.
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