
Predictable Internet Clients and
In-Switch Deep Packet Inspection

Sahil Gupta
Rochester Institute of Technology

Rochester, NY, USA
sg5414@rit.edu

Devashish Gosain
Max Planck Institute for Informatics

Saarbrucken, Germany
dgosain@mpi-inf.mpg.de

Minseok Kwon
Rochester Institute of Technology

Rochester, NY, USA
jmk@cs.rit.edu

Hrishikesh B Acharya
Rochester Institute of Technology

Rochester, NY, USA
acharya@mail.rit.edu

Abstract—Deep packet inspection (DPI) is important for net-
work security and is currently provided by complex black-
box firewalls. This raises the question: Can network admin-
istrators build their own DPI-capable filter using a standard
programmable switch? The common answer is that standard
switches support P4, which allows users to specify how to parse
packet headers, but not packet payload fields (e.g. URL) – thus
DPI tasks, like URL filtering, require dedicated middleboxes.

In this paper, we challenge this common answer. First,
we demonstrate that clients send packets with a predictable
structure, so a P4 switch can perform some DPI (enough for
URL filtering). Second, we demonstrate a URL-filtering firewall
completely in the data plane, with no external help from the
SDN controller, firewalls, etc. and no custom logic. Our proof-
of-concept, P4Wall, handles multiple protocols (HTTP, HTTPS,
DNS) with high performance – orders of magnitude faster than
a standard Linux (netfilter) firewall.

Index Terms—P4 language, programmable switch, Firewall

I. INTRODUCTION

Deep Packet Inspection (DPI), i.e., an inspection of the
payload of network packets, is essential for complex security
tasks such as URL filtering, detecting signatures of attacks
such as Heartbleed [1], or matching a virus signature in a
downloaded file. However, DPI is expensive: unlike simple
IP-based filtering or flow analysis, which are efficiently per-
formed by programmable switches1, DPI requires dedicated
middleboxes such as Cisco Firepower [4], SonicWALL [5],
or Fortinet FortiGate [6]. And such firewalls introduce issues
of their own: they are black boxes to the network adminis-
trator, they present a high-value target for attacks, and they
compromise many users when they leak.

We note that there exists a standard language (P4) that
allows users to specify the schema of a packet header, and

1Programmable switches can carry out computations on network and
transport layer headers, such as source IP and port, destination IP and port,
protocol, etc. This is sufficient for various network security tasks, such as the
detection of port scans [2] and DoS attacks [3].

give a programmable switch the ability to parse these headers2.
If a switch can (extract and) filter traffic by application-layer
headers, e.g. site URL or file type, it becomes an application
layer firewall, i.e. performs DPI. The question immediately
arises why such solutions do not replace black-box firewalls.

Indeed, such ideas have been proposed – for example,
Sekar’s CoMB architecture [7] built on the Click modular
router [8]. But current SDN platforms are not intended for
Deep Packet Inspection. The P416 standard makes this ex-
plicit [9].

• P4 is not a Turing-complete language; the P4 packet
“parser” really just extracts slices of bits (“slice” mean-
ing, a given length at a given offset). The parser cannot
loop, and cannot properly handle the following cases:
– Fields of variable length.
– Fields which may or may not be present.
– Fields present in random order.

• Headers of important application-layer protocols, such as
HTTP, do present all the above cases. (HTTP has 47
fields, which are mostly optional; important fields for
filtering, such as URL, are variable-length).

Thus while P4-compatible switches have some flexibility,
general DPI is beyond their scope. If a network admin wishes
to build their own DPI-capable infrastructure, the consensus is
that they must either use specialized platforms – e.g. NVIDIA
DPU [10], custom switches with non-standard extensions
(extern logic implemented on NetFPGA), etc.– or they
can have the switch outsource some work to an external
server [11], and provide enough servers to process traffic at
line rate. It is hardly surprising that enterprise and ISP admins
prefer standard commercial middleboxes.
At this point, we make two important observations.

2In a P4 program, the user defines the structure of packets of a protocol.
A switch loaded with the appropriate definition can parse headers of novel
protocols just like TCP or IP headers, but subject to some restrictions, as we
discuss in detail below.

1



- An application-layer firewall can be valuable even if it only
performs a few simple cases of DPI. Content censorship e.g.
social media or email, is usually performed with the help of
an end-point on the provider or the client. For the common
case in traffic inspection – blocklisting of websites – it is
sufficient to detect the URL.

- The URL is usually present in plaintext in HTTP traffic,
HTTPS traffic (the Server Name Indication field), and DNS
traffic. If it is present at a predictable position in network
packets, this common-case DPI can indeed be solved.

In other words: even if it is challenging to build a fully
general application-layer firewall in the data plane, it may
be possible to build a URL filter for traffic from practical
Internet clients. But to build such a filter using a standard
P4-programmable SDN switch, we must be sure that the URL
consistently appears at a predictable location in packets. This
brings us to the two contributions of this paper.
1) We demonstrate with a field study (Section IV) that in ac-

tual web traffic, the header has a predictable structure, even
for theoretically “free-form” protocols such as HTTP(S).
These protocols can reliably be parsed in the data-plane.
In other words, even simple SDN switches (not designed
for DPI) can perform URL filtering, thanks to the pre-
dictability of browser clients (and the lack of adoption
of secure protocols such as encrypted SNI and DNS-over-
TLS).

2) We develop P4Wall, a pure data-plane firewall capable of
simple deep packet inspection, on a simple consumer-grade
SDN switch (Netberg Aurora 710) [12] 3. P4Wall is able to
block URLs directly in the data plane for multiple protocols
– HTTP, HTTPS, and DNS.
In terms of scalability and performance, P4Wall greatly
outperforms a standard software firewall (Linux netfilter):
it works smoothly when filtering 1000 URLs from 10k
parallel traffic flows, with a near-zero packet processing
delay (< 0.05ms), and showing no degradation under 10
Gbps cross-traffic load.

P4Wall currently matches URLs from various protocols
(HTTP, HTTPS, DNS) with line-rate performance, and could
in future be extended to match keywords or other specific
strings. As we will make both our P4 code (for the Tofino
switch) and all related scripts etc. available to researchers for
future study or extension, we expect that SDN-based firewalls
with DPI capability may indeed see practical use in the future.

This paper begins with background about P4 and pro-
grammable switches in Section II, and the overview and
challenges for our system in Section III. We then move on
to our main sections: our field study in Section IV, system
implementation in Section V, and evaluation results in Sec-
tion VI. To wrap up, we discuss limitations and future work
in Section VII and related work in Section VIII, and end with
some concluding remarks.

3Our implementation runs on the Intel P4-based Tofino ASIC [13], but it
can be ported very simply to another platform such as the Broadcom NPL
ASIC [14], as we only use standard P4 functionality to parse packets, extract
fields, and trigger actions.

II. BACKGROUND

Fig. 1. Pipeline for a switch supporting P4 language [15].

A programmable data plane allows the user to write a
program to parse packets from different protocols. Notably,
the user can define custom headers for their own protocols
– they supply a schema describing the layout of the packet
headers, and the switch extracts these header fields from
packets in traffic and uses them for network processing tasks
(routing, load balancing etc.). This greatly reduces the barrier
to entry when deploying new protocols. The basic architecture
is provided in Figure 1.

• Parser. This is the programmable block where the user can
specify a schema for packet parsing.
The parser treats the packet as a string and extracts header
fields as sub-strings (of a given length and starting at a given
offset). It handles multiple protocols, in the same traffic,
through stateful parsing of a packet. As it passes down
the packet extracting headers, the information seen so far
determines what headers it expects next.
While the parser allows the user to define a protocol
header schema as they choose (hence the full form of
P4: programming protocol-independent packet processors),
such a schema does not expect optional, variable-length,
or variable-position fields. This constraint makes it very
difficult to parse application layer protocols, in which the
header fields are indeed of variable length and position.
Another challenge is that if the schema must match exactly.
If the packet is shorter than the parse length expected for
the protocol, it is dropped by the switch.

• Control block (Match-action tables). The control block
implements user-defined policies for packet classification.
As seen in the figure, the control block mainly consists
of match-action tables, where keys – fields extracted by
the parser, as well as metadata – are used to look up the
appropriate action for the packet. The action can be to drop
a packet, to set a target egress port for output, etc. These
tables are set by the control plane.
The control block also provides some facilities for storage
and computation, namely registers, counters, and meters.

2



Registers are essentially variables, storing key data elements
derived from the packet; counters maintain packets and byte
counts; and meters are used to shape traffic flow.

• Deparser. A component not shown in the diagram, the
deparser re-combines all the bytes of the (possibly modified)
packet headers back into a packet. The user can choose to
leave a particular header out of the reconstituted packet (by
setting its validity bit to zero). Packets can also be targeted
to multiple destinations here, i.e. mirrored.
We note that an actual implementation, such as our Tofino

switch, provides some additional facilities. The “buffer” com-
ponent in Figure 1 can be expanded into a traffic manager –
which is not programmable using the P4 language, and also
helps decide which egress port to forward the packet to. In
many architectures such as PSA [16] each pipeline (ingress or
egress) has its own parser, control block, and deparser, so the
switch effectively gets two passes over the packet. (Note: a P4
parser cannot loop over the packet.) And most powerful of all:
modular functionality can be added to the data plane, through
user defined control blocks, which may be incorporated into
either the ingress or the egress control block.4

As our aim is to perform deep packet inspection using only
standard P4, we do not make use of any of these advanced
features, user-defined control blocks, or external help from
servers and firewalls. Once the switch is set up (i.e. it has
received its P4 protocol definitions and the match-action tables
from the controller), it operates independently to perform
traffic filtering, using only its parser and the match-action
tables of the input control block.

III. OVERVIEW AND CHALLENGES

This section introduces how we build a generic (multi-
protocol) application-layer firewall in the data plane, the
challenges we face, and the assumptions we make.

Our firewall takes two inputs from the network administra-
tor: a filtering policy i.e. list of blocklisted URL’s, and a data
definition in the P4 language, setting out the fields that the
parser should extract from packets. We begin by considering
how the system would operate, if we could specify it like an
IP filter, but using a different field of interest (i.e. URL).
• The data definition specifies the position in a packet where

the field of interest (i.e. the URL) is present.
• The switch extracts the URL from this location, using the

ingress parser, and matches it using the match-action table.
• The match-action table triggers the action, drop, if the URL

is indeed on the block list. Otherwise, the packet does not
have a URL we are blocking; it is allowed to pass.
This starting design needs to be modified because of two

challenges, which we present below.

4Such a block has the same ingress and egress-stage resources and data
available to them, but the logic is relatively free-form, so they are able to per-
form more complex packet processing tasks. They are generally implemented
using reprogrammable hardware (NetFPGA); high-performance switches use
dedicated ASIC implementations of architectures such as Tofino TNA [17],
so it is difficult and expensive to provide user-defined control logic on such
a switch.

A. Challenge 1. Parsing

The “parsers” in P4 are not recursive-descent parsers able
to match a regular grammar. They are strictly limited to
extracting bit slices from a packet, i.e. fixed-length header
fields from known locations. This makes it difficult to extract
variable-length domain names with variable start positions.
• Our first attempt was to use the P4 varbit data type, which

the parser can use to extract a field of variable length (e.g.
for variable-length IP or TCP headers). This approach failed,
as varbits cannot be used as keys in a match-action table.

• Our next idea was to keep track of state in the parser.
(The P4 parser is stateful: for example, it keeps track when
it removes an Ethernet header, so it can check for IPv4,
IPv6 etc. headers next.) Might it be possible to match an
entire URL byte-by-byte, using the parser as a Finite State
Machine? We found that this is very challenging: the number
of parser states is small, and the number of states required
for a URL-matching automaton would be very large for a
non-trivial firewall.

• Our final idea was to check the range of bytes in the packet
payload that could possibly contain the domain name. While
the protocol definitions for say HTTP are very liberal, we
suggested that in practice, the position of URL in a HTTP(S)
or DNS packet is highly predictable. We then checked this
hypothesis with a field study (Section IV).
Our study demonstrated that while URL positions in packets
were not rigidly predictable – there was a range of positions
for the domain name, in DNS response, HTTP GET, and
TLS client hello packets – the range was small enough to
handle using case-by-case enumeration. This is the approach
we adopt in this paper.

B. Challenge 2. Platform Constraints

A switch has limited computing power as well as memory.
In particular, the ternary content-addressable memory (TCAM)
used for match-action tables is limited, expensive, and enforces
a limit on the length of the key used in rule lookup.

Our system originally used different match-action tables
for HTTP, HTTPS and DNS. This system strongly limited
the number of URL’s filtered by P4Wall (< 200), and we
considered adding the restriction that P4Wall can work only
one protocol at a time, to accommodate more rules.

However, we are happy to report that a simple optimization
– extracting the URL, i.e. match key, from different protocols
with the parser as a slice that always has the same length
(32 bytes, whether HTTP, HTTPS, or DNS) – allowed us to
implement P4Wall as a single match-action table, filtering over
1000 domains per switch5; details follow in Section V.

IV. FIELD STUDY: LOCATING URLS IN PACKETS

The main challenge in parsing packets to extract URL is that
the length and position of the URL are variable; this poses
an issue for the P4 parser. However, this issue may not be

5Our switch is a simple Netberg Aurora 710, which is available for $ 5000.
An ISP switch would be far more capable.

3



insurmountable. In practice, almost all users access the Web
using one of a small variety of clients [18]. If these clients
generate predictably-structured packets, it is possible the URL
is present in a well-defined and predictable location in DNS
response, HTTP GET, and TLS client hello packets. In order
to test this hypothesis, we carried out a field study, which we
present in this section.

A. Model of Protocol Packets.

As shown in figure 2, we model packets as made up of four
parts, of length X, Y, Z and R respectively.

• X is the length of the packet up to (and including) the
layer-4 header.

• Y the length after TCP/UDP header till the start of URL
(i.e. the “Host” field in HTTP, “Server Name Indication
(SNI)” in HTTPS, “Query Name (qname)” field in DNS).

• Z is the length of the URL itself.
• R is the length of the remaining packet.

Our study attempts to characterize the starting and ending po-
sitions of domain names in the packets of different protocols,
and whether they vary with browser, OS, etc.; in other words,
we are concerned only with the variation in Y and Z.6

Fig. 2. Packets and their parts: DNS, HTTP, and HTTPS.

B. Field Study and Observations.

In our field study, we generated and captured traffic to
the Alexa top-10k websites, using Google Chrome, Mozilla
Firefox, and Microsoft Edge on Windows 10 and Ubuntu 18.04
LTS OS. Data was collected and the position of fields was
measured using the Python library scapy. (Requests to a site
often resolved into multiple sub-domain requests – e.g. probing
qq.com also initiates connection to images.qq.com. So
our analysis actually covered well over 10k domains.)

Our results appear in Table I. For example, when Firefox,
Chrome, and Edge browsers on Windows 10 OS access Alexa
top-10k websites, the HTTP GET requests always have URL
between the 22nd and 45th byte after the TCP header.

We see that for DNS, there is no variation of the minimum
starting point and maximum ending point (i.e. it remains
consistent across OS and browsers for all sites in our study).

6X may have some variation caused by optional IP, TCP etc. fields, but this
is handled using varbit fields in the parser.

DNS
Firefox Chrome Edge

Windows 13 – 49 13 – 49 13 – 49
Linux 13 – 49 13 – 49 13 – 49

TLS
Firefox Chrome Edge

Windows 125 – 198 125 – 161 101 – 198
Linux 125 – 161 127 – 167 127 – 163

HTTP
Firefox Chrome Edge

Windows 22 – 45 22 – 45 22 – 45
Linux 22 – 53 22 – 53 22 – 53

TABLE I
URL POSITION IN PACKETS, AS MIN START – MAX END.

Protocol Start End Parse Acc. Match Acc.
HTTP 22 53 100 100
TLS 125 157 100 99.9
DNS 13 40 99.6 99.7

TABLE II
PARSING AND PATTERN-MATCHING ACCURACY, ALEXA TOP-10K SITES

(USING THE GIVEN START AND END POSITIONS TO EXTRACT URL).

HTTP shows minimal variation. HTTPS shows more, but it is
limited enough to cover by case-by-case enumeration.

C. Choosing Start and End Positions.

If Y varies in the range Ymin to Ymax and Z from Zmin

to Zmax, for a given protocol, the URL is certain to lie in
the range between the earliest possible start point i.e. Ymin

and the last possible end point i.e. Ymax + Zmax. (Section V
explains how we handle any non-URL bytes in the slice.)

However, if we naively parse packets using the ranges in
Table I, we find that for some packets with short URL, the
entire packet ends before Ymax + Zmax. When we ask the
parser to fetch a field that extends past the end of the packet,
it ignores the packet completely.

Our challenge is to choose start and end points such that (1)
a high percentage of packets are successfully parsed (we call
this metric parse accuracy), and also (2) in a high percentage
of parsed packets, the URL lies between our chosen start and
end points (we call this match accuracy) 7.

Table II shows there is indeed a sweet-spot for the length of
field extracted from the packet (32 bytes for HTTPS, 31 bytes
for HTTP, and 27 bytes for DNS), such that we successfully
parse it from almost or exactly 100% of the target packets
(high parse accuracy), and also expect it to contain the URL
roughly or exactly 100% of the time (high match accuracy).
In almost 100% of cases, the given start and end positions
ensure that the user-defined field neither overshoots the end
of packet, nor misses the URL in the packet.

7These goals are in tension! To increase parse accuracy we want the slice
to be as narrow as possible, but to increase match accuracy we want it to be
wide.

4



V. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we explain the system design and the actual
setup of the P4Wall system.

A. Deep Packet Inspection with P4

P4Wall is a dataplane program to filter packets, by matching
a given string (URL or SNI) at a known position in the packet.
We make use of the Ternary Content-Addressable Memory
(TCAM) match-action tables, available after the “parser” in
the packet pipeline of a P4-compatible switch.

TCAM allows for constant-time retrieval of records using
a ternary key value (i.e. the key can include don’t-care bits).
It is therefore a very useful standard component of switches.
For example, a rule

10.111. ∗ .∗ → 8

allows for a partial match on a packet field (here, destination
IP) to look up an action (here, route out on interface 8). The
wildcard * indicates a don’t-care byte.

In our case, the field to match is the URL, and the associated
action for a successful match is to drop the packet. If the HTTP
GET, HTTPS ClientHello, or DNS response packets cannot get
through, this is sufficient to prevent a session with the website,
so it is effectively blocked (see Figure 3).
Handling variation in URL length.

Our first challenge is that in match-action tables, the key
cannot be a varbit, i.e. a field of variable length. We must ask
the P4 parser to always give us a slice of the same length,
though there is variation in the URL length Z. (In Alexa top-
100 sites, URL length ranges from 10, for www.qq.com, to
24 for www.thestartmagazine.com.)

We respond to this challenge by asking the parser for a slice
of the optimum expected length, as explained in the previous
section. For all the shorter URLs, we pad the length of the
string with don’t-care matches. So for example, using “*” to
represent a don’t-care, we would place a rule matching the
pattern
“www.qq.com**************”.
Handling variation in URL start position.

The switch can remove all L2 to L4 headers effectively, so
the main challenge is the variation in Y as per our model.
Suppose Y varies from say 100 to 102, for a given protocol.
In order to match “qq com” starting at position 101, 102, or
103. As the parser will blindly fetch a slice from a constant
start to a constant end position, we insert three patterns:
“www.qq.com****************”,
“*www.qq.com***************”,
“**www.qq.com**************”.

In brief, as the URL could be located anywhere in a range,
and one rule corresponds to a single position of the URL in
the packet, we have a range of TCAM rules for a single URL.

B. Experimental Setup: Testbed

Our experimental setup, shown in Figure 4, is designed to
test the performance of P4Wall on a real switch (Netberg

Aurora 710 [12]) and also to compare it against a standard
application-layer firewall (Linux netfilter).

• Client host : A Linux machine, set up to generate traffic
and craft packets as needed.

• Server host : In order to serve requests for all protocols
(HTTP, HTTPS and DNS), we run Nginx [19], dnsmasq
[20] and iperf [21] in server mode on this host.

• P4-capable switch : Netberg Aurora 710 switch based on
the Intel Tofino ASIC and natively supporting P4. The
switch has a small on-board CPU running Open Network
Linux (ONL), and runs the compiled output from the
P4Studio IDE (i.e. the dataplane P4 program) as a daemon.
A local process on the switch serves as SDN controller.

• Standard Firewall : A Linux server, set up to forward
and filter traffic using the standard netfilter firewall,
as a baseline to compare with P4Wall. To ensure that the
bottleneck is netfilter, and not the network interface, we
used the same 10 Gbps Network Interface Cards on the
client/server and firewall machines.

C. Testing Workflow

1) Switch Setup: Our first step is to build and deploy
P4Wall on the Tofino switch. The dataplane program compiles
to a tofino.bin file to configures the pipeline, and also
two JSON objects i.e. the contract between control plane and
dataplane. Using this contract, the control plane takes the
intermediate BFRT (Barefoot) policies (that declare packets
with the target pattern – say **censored.com**** – should be
dropped), and install these as match-action rules in the switch.

Our rules for different protocols (HTTP, HTTPS, and DNS)
are all placed in a single match-action table, so we can fit as
many domain names as possible in the switch blocklist.

This setup raises a practical issue: as per Section IV-C, the
values of X, Y and Z, which determine the length of string
to match, are different for different protocols. But at the same
time, the key string for a single match-action table must be a
uniform length. Our solution is to select a length of 32 bytes
for the key, as the range for HTTPS is 32 bytes, for HTTP
is 31 bytes, and for DNS 27 bytes. For DNS and HTTP, the
URL is padded with additional bytes to create a 32-byte key.

The string is converted to ASCII hex representation to create
a key for the match-action table. Finally, a script converts these
into filtering rules as per the Tofino Barefoot API (the key
triggers the action DROP, so a match causes the packet to be
dropped), and the control plane installs them as match-action
table rules in our switch. (Our SDN controller is a simple
python process which installs our rules in the switch TCAM
table, and also extracts statistics for evaluation.)

2) Traffic source and sink: Our analysis uses mixed traffic,
with live client-server connections for HTTP, HTTPS and
DNS. The client machine creates multiple parallel HTTP,
HTTPS and DNS connections (for example, using bash scripts
to run curl and dig respectively, or using scapy to generate
TCP packets of a specific length). iperf is used to generate
additional requests, i.e. cross traffic.

5



Fig. 3. P4Wall: packet parsing and matching in switch.
First, the packet arrives at the Ingress port. Next, the (ingress) parser separates different headers (e.g. TCP), and particularly the user-defined header containing
the URL. Finally, the control block matches the user-defined header field to see if there is a rule to drop it. On a successful match, the entire packet is dropped.

Fig. 4. Experimental setup: Client machine fetches web pages or DNS
responses from Server machine. The traffic is passed through our Tofino
switch (running P4Wall) and Netfilter firewall in separate runs for performance
comparison.

The server machine runs nginx to respond to both HTTP
and HTTPS requests from the client, and dnsmasq to handle
DNS requests. It also runs iperf in server mode, to respond
to cross-traffic requests from the client.

3) Routing: Traffic is routed through two separate network
interfaces to pass through our Linux firewall or through our
switch running P4Wall, as required. For all test websites
(Alexa top-1k), we insert records in the client /etc/hosts
file to redirect them to the appropriate server IP for the test (i.e.
10.0.0.2 for the NIC connected to the switch, and 10.0.3.1 for
the NIC connected to the firewall). We also ensure the routing
tables on client, server, firewall, and switch are all set up for
correct forwarding of packets.

4) Firewall Setup: The netfilter firewall is deployed on a
Ubuntu 20.04 LTS server, set up to filter the traffic it forwards
from ingress to egress port. We ensure no other rules are
installed besides our URL filters (blocking the Alexa top-1k
websites, for all three target protocols).

5) Measurement Collection: To benchmark our switch and
firewall, we collect packet captures (pcap) from the ingress
and egress ports – i.e., the client-side and server-side network
interfaces, respectively – on the switch and on the firewall
server, and note the difference in timestamp.

Fig. 5. Packet processing time: Avg time a packet spends within firewall.

VI. EVALUATION

This section covers our experimental evaluation of P4Wall
(or more precisely, of our implementation of P4Wall on the P4-
compatible Netberg Aurora 710 switch, with the Intel
Tofino ASIC). We assess its performance w.r.t several metrics:
packet processing time and queue occupancy, throughput, and
impact of packet size. To provide a baseline we use the
standard Netfilter firewall (Nffw), using the same filtering rules
in P4Wall and Nffw. It is shown as UTfw in the legend in the
graphs. Our experiments use the setup described in Section V.

1) Packet processing time: Our first metric of interest is
packet processing time, which we define as the average-case
difference between the egress time and the ingress time for a
packet passing through the switch.

We generate test traffic using standard clients (browsers and
curl) to access web pages hosted on our web server/DNS
server machine, using both HTTP and HTTPS protocols. DNS
traffic is generated using the client dig.

Figure 5 shows the average response time over 10 webpage
accesses, for (1) DNS queries (2) HTTP GET requests and (3)
TLS client hello packets. As we add more rules, the packet

6



Fig. 6. Packet processing time (log scale): With 10k flows through firewall.

Fig. 7. Queue occupancy: Under heavy cross-traffic (i.e. 10k flows), increas-
ing firewall rules do not impact queue occupancy.

processing time of Nffw increases steadily, but P4Wall has
nearly constant processing time (.02 − .04 ms) as expected
from a TCAM implementation.

To further assess the impact of cross-traffic, we generated
10k parallel web connections through the P4 switch and Nffw
separately. As Figure 6 shows, even with 1000 filtering rules
P4Wall does not have an appreciable impact on the packet-
processing time of the switch. This graph is semi-logarithmic:
with traffic filtering rules for 1000 domains, the average packet
processing time is ≈ 1.4 sec for Nffw, and ≈ 0.02 ms with
P4Wall (i.e. a speedup of 7 × 104 times). We conclude that
with a large number of firewall rules, Nffw performs poorly
compared to P4Wall. Further, the difference increases under
heavy cross-traffic.

We note that our experiment focuses on the average-case
performance. Is it possible that a few worst-case packets get
arbitrarily delayed, or perhaps a queue in the switch is slowly
filling up (so performance would degrade after a few hours or
days)? To answer this question, we check the queue occupancy
inside the switch. As Figure 7 shows, there is no such backlog

Fig. 8. Impact of packet size on packet processing time.

of packets accumulating within the switch, even with 10k
parallel flows, and even with large filter lists (1000 URLs).

2) Impact of packet size: Different applications generate
packets of different sizes. Could applications generating larger
packets cause congestion at the P4 switch running P4Wall?
To answer this concern, we generated traffic with varying
packet sizes (with random bytes inserted), and recorded the
packet processing time with the firewalls (Nffw and P4Wall)
configured to filter 500 domains, and again for 1000 domains.

Figure 8 illustrates that for both 500 and 1000 domains,
P4Wall not only consistently outperforms Nffw, it also does
not lose performance with increasing packet size.

3) Throughput: Our final metric of interest is throughput,
which determines the rate at which a user can access bulk
content (streaming, downloads). We use iperf to measure
throughput and how it varies as we increase the number of
filtered domains (and thus firewall rules).

As Figure 9 shows, adding firewall rules adversely impacts
Nffw, but P4Wall shows no measurable impact. With no
filtering rules, iperf reports nearly 10 Gbps throughput for
both Nffw and P4Wall; with rules for 100 domains, Nffw
reduces the throughput by 100× while P4Wall shows no
decrease at all.

Overall, our experimental evaluation confirms that P4Wall
not only outperforms a netfilter firewall by orders of mag-
nitude, we also see the difference steadily increases as we
increase the test load.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss a few points of interest regarding
P4Wall including analysis, possible significance, and some
issues (that may be addressed in future work).

A. P4Wall runs on a switch with very limited computational
power. Will it work at Enterprise or Internet scale?

P4Wall is a proof-of-concept system, and its primary pur-
pose is to show that DPI is possible using P4-programmable

7



Fig. 9. Throughput (log scale): Impact of increasing firewall rules.

switches. At the same time, we note that even as a proof of
concept, it clearly works at a non-trivial scale.

Our results in Section VI demonstrate that a switch can
filter substantial traffic without any increase in latency or
packet loss. The limiting factor is TCAM memory: firewall
rules could fill up the memory and leave the switch unable to
perform other functions such as packet routing. However, we
note that in practice, we were able to create filtering rules for
Alexa top-1k domains using a standard cheap switch (Netberg
710), and even then had ≈ 20% of memory left over for
additional functions. Hence, while URL filtering is of the order
of 100x less efficient than simple IP blocking (we could block
≈ 147.5k IPv4 addresses using the same TCAM memory as
1k URLs), it is clearly possible to implement P4Wall with a
decent-sized blacklist even on modest hardware.

An actual ISP or enterprise admin would certainly use
multiple switches to cover required SDN applications, such as
load balancing, and would likely spread the blacklist across
multiple switches as well. When P4Wall is run on a single
smart switch by a small user – say, as the “gateway” in
a campus network, providing Network Address Translation
(NAT), IP-based Access Control (ACL), and URL filtering –
most likely the blacklist would also be small, and there would
be enough capacity to carry out these functions.

B. P4Wall can only perform specific cases of DPI. In future,
will it handle encrypted traffic, as proposed by secure modern
protocols?

Like most firewalls and IDS, P4Wall cannot by itself filter
encrypted traffic. This power is only enjoyed by bump-in-
the-wire firewalls, which (i) require all users of the network
to install a new Certificate Authority so their TLS sessions
can be compromised, and (ii) can thus perform Man-in-the-
Middle attacks on encrypted connections to inspect traffic.
A standard programmable switch is not able to perform

encryption/decryption without additional logic, so P4Wall is
limited to simple DPI tasks that do not involve decryption.

However, even with this limited power P4Wall is quite
effective. Besides providing data security for any websites
that use HTTP without TLS, in case of HTTPS, the URL is
revealed by the Server Name Indication (SNI) in a TLS client
Hello message. TLS 1.3 can also encrypt the Client Hello
message, including an encrypted SNI; however, in our study
in Section V, we did not see a single use of this feature, and
indeed found that modern browsers still use TLS 1.2 (at least
for our sample, i.e. Alexa Top 10k websites).

The case of DNS is similar. P4Wall cannot handle encrypted
DNS packets, as in the DNS-over-TLS (DoT) or DNS-over-
HTTPS (DoH) protocols [22]. But the percentage of DNS
packets making use of such encryption is quite negligible: Kim
et al [23] report a figure of 0.09%. It will take considerable
time for DNS-over-HTTPS to become popular enough to
threaten firewalls.

We intend to explore hybrid solutions (i.e. firewalls where
P4Wall is paired with a middlebox, specifically to handle
encrypted traffic), in future work.

C. How robust is P4Wall to adversarial traffic? Can it handle
short or fragmented packets?

While P4Wall is a proof-of-concept, it is surprisingly robust
to adversarial traffic.

First, we mention small packets. Legitimate small packets
were never an issue in our tests with HTTP(S), but some DNS
queries were indeed too short (and were skipped by the parser);
we addressed this problem by focusing on DNS responses
rather than queries. In future we may divide the packets into
groups by length, and send them to different switches (with
different filter settings) for P4Wall inspection.

Fragmentation is a more challenging problem. When a
URL is split across multiple packets, it does not show up
as a single string in any one packet and the firewall can be
bypassed. We currently defeat this attack simply by dropping
such fragmented packets; honest HTTP GET, TLS ClientHello,
or DNS responses are rarely large enough to be spread over
multiple packets. A more nuanced approach would be to delay
them, using the P4 technique of recirculation (looping from
egress back to ingress) until all fragments are received, then
reassemble the packet and then match URL. This is a direction
of planned future work.

D. Why is P4Wall tested against netfilter, rather than a Next-
Generation Firewall device (Fortigate etc.)?

P4Wall is currently a proof of concept. Our current con-
tribution is not focused on its performance – it is that we
demonstrate how (limited) DPI can be performed in the
data plane, using only standard P4, even though P4 was not
designed for such use [24].

In our tests, we compare our first implementation of P4Wall
against netfilter as it is a standard (software) firewall [25], [26].
P4Wall wins the comparison, and demonstrates that it is a
competitive option within the scope of our problem. However,

8



it does not yet support advanced features like Keyword filter-
ing, DoS or scan detection, etc. (which enterprise firewalls do
support). In future work, we will explore how P4Wall can be
extended to support such features, and provide a meaningful
performance comparison against true Internet-scale firewalls.

VIII. RELATED WORK

SDN switches with a programmable data plane have been
used in a wide range of network functions such as load
balancing [27]–[29], telemetry [30], and for offloading tasks
from servers [31]. More recently, they have also made a
substantial impact in network security tasks [3], [32]–[41], in
particular detecting and protecting against attacks such as port
scans and distributed denial-of-service attacks. However, these
contributions focus on manipulating flow-level information
from packet headers – i.e., no Deep Packet Inspection8.

This is even more true for the body of work that makes use
of P4-compatible switches as stateful or stateless firewalls in
the data plane [42]–[46], such as in particular, P4Guard [47],
and Gallium [48]. These works build on the tradition of using
SDN switches [49] and even plain switches/routers as network-
layer firewalls [50], and utilize header information from Layers
2, 3 and 4. They do not touch the TCP or UDP payload,
and therefore, cannot perform application-layer firewalling or
Deep Packet Inspection. We consider these approaches to be
complementary to our work.

We now go on to consider the most directly-related papers,
studying Deep Packet Inspection in the data plane.

Meta4 [23], one early example of DPI in the programmable
data plane, captures packets stats per domain name. It has
a very limited domain-parsing ability (four domain name
labels), works only for DNS packets, and makes use of packet
re-cirulation to update statistics in registers. Even so, this
approach may be useful for specific use cases such as IoT
device fingerprinting, DNS tunnel detection, and DNS based
denial-of-service attacks.

A more directly-related approach comes from Jepsen et
al. [51], who recirculate packets to parse out keywords in
the payload. While we found their use of Deterministic Finite
Automata (DFA) on a P4-capable switch to be very interesting,
and are ourselves investigating this approach, the fact that
the packet is consumed while searching for strings makes the
approach useless for a firewall. We are actively trying to see if
this shortcoming can be overcome and used for Deep Packet
Inspection for network security.

DeepMatch [11] is perhaps the closest match to our own
work: it successfully performs Deep Packet Inspection (DPI)
on packet payloads. However, DeepMatch is developed in
Micro-C, and targets the Netronome NFP-6000 SmartNIC –
i.e., custom logic integrated in the switch. In comparison, we
target a standard platform.

The other closely-related work we are aware of, P4DNS
[52], extracts the domain name from a DNS query packet and

8A scan is indicated by many flows in quick succession with the same
source IP but different destination IP. For a DDoS attack, there are many
source IPs and one destination IP.

builds a DNS response packet using the match-action table as
a lookup table. Their solution was DNS-specific only parsed
very limited-length domain names, but it remains a potential
approach we may use for DNS-specific security.

Finally, in our own demo paper [redacted for review], we
first mention that actual traffic may have predictable URL
positioning in the packet. These early observations laid the
foundation of our systematic field study (in Section IV). In this
paper, we build on this work, studying the constraints required
for a solution and demonstrating an actual implementation of
a DPI-capable firewall in the data plane.

In this paper, we demonstrate how the practical predictabil-
ity of network traffic makes it possible to perform DPI in
the programmable data plane. Our system P4Wall can handle
multiple protocols, with excellent performance for its (limited)
DPI task (filtering of blocklisted URL). We trust our imple-
mentation will draw attention to the fact that P4 can provide
more than just header-field filtering. It also opens the question
of how we might build and scale a proper application-layer
firewall in the data plane, which we will explore in future
work.

IX. CONCLUSION

In this paper, we demonstrate P4Wall, a URL-filter in the
dataplane. Our primary contribution is to show that simple
P4 switches are powerful enough to perform limited DPI,
without custom logic (extern hardware implemented using
NetFPGA etc.), or external help from firewalls. Secondly,
P4Wall performs simple Deep Packet Inspection (i.e. URL
detection) for multiple application-layer protocols, scales to
a substantial number of domains (1000), and outperforms a
standard software firewall by three to four orders of magni-
tude. So even though P4Wall is a proof-of-concept, it could
be immediately deployed e.g. by small network admins to
blacklist malware domains. Further, as our implementation is
compatible with any standard P4-compatible SDN switch, it
is easily within reach for e.g. campus networks who cannot
afford enterprise solutions. Finally, as P4Wall uses a simple
algorithm, we anticipate it can easily be updated in response
to change (for example, if browsers change the structure of
their HTTP requests). We intend to study methods to scale-up
the power of P4Wall so it can handle larger lists and more
robust methods, in our future work.

REFERENCES

[1] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,”
IEEE security & privacy, vol. 12, no. 4, pp. 63–67, 2014.

[2] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and
P. Castoldi, “P4 edge node enabling stateful traffic engineering and
cyber security,” IEEE/OSA Journal of Optical Communications and
Networking, vol. 11, no. 1, pp. A84–A95, 2019.

[3] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa,
“In-network volumetric ddos victim identification using programmable
commodity switches,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1191–1202, 2021.

[4] “Cisco firepower threat defense,” https://www.cisco.com/
c/en/us/support/\\docs/security/asa-5500-x-series-firewalls/
212420-configure-firepower-threat-defense-ftd.html.

[5] “Sonicwall supermassive series,” https://www.sonicwall.com/\\
medialibrary/en/datasheet/datasheet-sonicwall-supermassive-series.pdf.

9



[6] “Fortinet fortigate series,” https://www.fortinet.com/products/
next-generation-firewall/mid-range, Accessed: 2022-05-25.

[7] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). San Jose, CA: USENIX Association, Apr. 2012,
pp. 323–336. [Online]. Available: https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/sekar

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[9] M. Budiu and C. Dodd, “The p416 programming language,” SIGOPS
Oper. Syst. Rev., vol. 51, no. 1, p. 5–14, sep 2017. [Online]. Available:
https://doi.org/10.1145/3139645.3139648

[10] “Nvidia bluefield data processing units,” https://www.nvidia.com/en-us/
networking/products/data-processing-unit/.

[11] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon,
and J. M. Smith, “Deepmatch: practical deep packet inspection in
the data plane using network processors,” in Proceedings of the 16th
International Conference on emerging Networking EXperiments and
Technologies, 2020, pp. 336–350.

[12] “Netberg Aurora 710 Intel Tofino Switch,” https://netbergtw.com/
products/aurora-710/.

[13] “Intel® Tofino™,” https://www.intel.com/content/www/us/en/products/
\\network-io/programmable-ethernet-switch/tofino-series.html,
Accessed: 2022-05-25.

[14] “Network programming language,” https://nplang.org/npl/explore/, Ac-
cessed: 2022-05-25.

[15] P. W. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. E. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” Comput.
Commun. Rev., vol. 44, pp. 87–95, 2014.

[16] “Portable switch architecture (working draft),” https://p4.org/p4-spec/
docs/PSA.pdf.

[17] “Open Tofino,” https://github.com/barefootnetworks/Open-Tofino, Ac-
cessed: 2022-05-25.

[18] “Statcounter,” https://gs.statcounter.com/.
[19] “Nginx web server,” https://www.nginx.com/.
[20] “dnsmasq: Dns server,” https://thekelleys.org.uk/dnsmasq/doc.html.
[21] “iperf: Network measurement tool,” https://iperf.fr/.
[22] T. V. Doan, I. Tsareva, and V. Bajpai, “Measuring dns over tls from

the edge: Adoption, reliability, and response times,” in International
Conference on Passive and Active Network Measurement. Springer,
2021, pp. 192–209.

[23] J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by domain name in
the data plane,” in Proceedings of the ACM SIGCOMM Symposium on
SDN Research (SOSR), 2021, pp. 1–12.

[24] “The p4-16 language specification.” [Online]. Available: https:
//p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

[25] M. Mihalos, S. Nalmpantis, and K. Ovaliadis, “Design and implemen-
tation of firewall security policies using linux iptables.” Journal of
Engineering Science & Technology Review, vol. 12, no. 1, 2019.

[26] A. Kak, “Computer and network security lecture notes,” https://
engineering.purdue.edu/kak/compsec/.

[27] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research, 2016, pp. 1–12.

[28] E. Cidon, S. Choi, S. Katti, and N. McKeown, “Appswitch: Application-
layer load balancing within a software switch,” in Proceedings of the
First Asia-Pacific Workshop on Networking, 2017, pp. 64–70.

[29] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 125–139.

[30] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, vol. 15, 2015.

[31] Â. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading real-
time ddos attack detection to programmable data planes,” in 2019
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). IEEE, 2019, pp. 19–27.

[32] G. Grigoryan and Y. Liu, “Lamp: Prompt layer 7 attack mitigation with
programmable data planes,” in 2018 IEEE 17th International Symposium
on Network Computing and Applications (NCA). IEEE, 2018, pp. 1–4.

[33] M. Kuka, K. Vojanec, J. Kučera, and P. Benáček, “Accelerated ddos
attacks mitigation using programmable data plane,” in 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). IEEE, 2019, pp. 1–3.

[34] F. Paolucci, F. Cugini, and P. Castoldi, “P4-based multi-layer traffic engi-
neering encompassing cyber security,” in Optical Fiber Communication
Conference. Optical Society of America, 2018, pp. M4A–5.

[35] Y. Mi and A. Wang, “Ml-pushback: Machine learning based pushback
defense against ddos,” in Proceedings of the 15th International Confer-
ence on emerging Networking EXperiments and Technologies, 2019, pp.
80–81.

[36] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
sdn data plane,” in IEEE INFOCOM 2017-IEEE Conference on Com-
puter Communications. IEEE, 2017, pp. 1–9.

[37] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-assisted ddos attack detection with p4 language,”
in ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 2020, pp. 1–6.

[38] X. Z. Khooi, L. Csikor, D. M. Divakaran, and M. S. Kang, “Dida:
Distributed in-network defense architecture against amplified reflection
ddos attacks,” in 2020 6th IEEE Conference on Network Softwarization
(NetSoft). IEEE, 2020, pp. 277–281.

[39] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev,
“{NetHide}: Secure and practical network topology obfuscation,” in
27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
693–709.

[40] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in the 27th Network and Distributed System
Security Symposium (NDSS 2020), 2020.

[41] T. Kohler, R. Mayer, F. Dürr, M. Maaß, S. Bhowmik, and K. Rothermel,
“P4cep: Towards in-network complex event processing,” in Proceedings
of the 2018 Morning Workshop on In-Network Computing, 2018, pp.
33–38.

[42] J. Cao, J. Bi, Y. Zhou, and C. Zhang, “Cofilter: A high-performance
switch-assisted stateful packet filter,” in Proceedings of the ACM SIG-
COMM 2018 Conference on Posters and Demos, 2018, pp. 9–11.

[43] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo, “Pro-
grammable {In-Network} security for context-aware {BYOD} policies,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
595–612.

[44] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang,
“Hardware-accelerated firewall for 5g mobile networks,” in 2018 IEEE
26th International Conference on Network Protocols (ICNP). IEEE,
2018, pp. 446–447.

[45] ——, “Netfpga-based firewall solution for 5g multi-tenant architectures,”
in 2019 IEEE International Conference on Edge Computing (EDGE).
IEEE, 2019, pp. 132–136.

[46] P. Vörös and A. Kiss, “Security middleware programming using p4,”
in International Conference on Human Aspects of Information Security,
Privacy, and Trust. Springer, 2016, pp. 277–287.

[47] R. Datta, S. Choi, A. Chowdhary, and Y. Park, “P4guard: Designing p4
based firewall,” in MILCOM 2018-2018 IEEE Military Communications
Conference (MILCOM). IEEE, 2018, pp. 1–6.

[48] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated soft-
ware middlebox offloading to programmable switches,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 283–295.

[49] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a reliable {SDN}
firewall,” in Open Networking Summit 2014 (ONS 2014), 2014.

[50] A. X. Liu, Firewall design and analysis. World Scientific, 2010, vol. 4.
[51] T. Jepsen, D. Alvarez, N. Foster, C. Kim, J. Lee, M. Moshref, and

R. Soulé, “Fast string searching on pisa,” in Proceedings of the 2019
ACM Symposium on SDN Research, 2019, pp. 21–28.

[52] J. Woodruff, M. Ramanujam, and N. Zilberman, “P4dns: In-network
dns,” in 2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). IEEE, 2019, pp. 1–6.

10


